
Under Control: Compositionally Correct Closure Conversion
with Mutable State

Phillip Mates

Northeastern University

Jamie Perconti

Northeastern University

Amal Ahmed

Northeastern University

ABSTRACT
Compositional compiler verification aims to ensure correct compila-

tion of components, not just whole programs. Perconti and Ahmed

[2014] propose a methodology for compositional compiler correct-

ness that supports linking with code of arbitrary provenance. In

particular, they allow compiled components to be linked with code

whose functionality cannot even be expressed in the compiler’s

own source language. The essence of their approach is to define

a multi-language system that formalizes interoperability between

the source and target languages so that compiler correctness can

be stated as contextual equivalence in the multi-language. They

illustrate this methodology on a two-pass type-preserving compiler

for a polymorphic language with recursive types.

We showhow to extend thismulti-language compiler-verification

approach to a source language with ML-style mutable references.

We present the first compositional correctness proof of typed clo-

sure conversion for a language with mutable state. More impor-

tantly, we show we can extend our target language with first-class

control (call/cc) yielding a compiler correctness theorem that allows

components compiled from the source language (without call/cc)

to be linked with target-language components (with call/cc) whose

extensional behavior cannot be expressed in the source. A non-

trivial technical contribution is the design of the multi-language

logical relation used to carry out the proof of compiler correct-

ness. This is semantically challenging due to the mix of parametric

polymorphism and mutable state in both interoperating languages.

CCS CONCEPTS
• Software and its engineering → Correctness; Functional
languages; Compilers; Interoperability.

KEYWORDS
Compiler correctness, typed closure conversion, multi-language

semantics, mutable state, first-class continuations, logical relations

ACM Reference Format:
Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control: Com-

positionally Correct Closure Conversion with Mutable State. In Principles
and Practice of Programming Languages 2019 (PPDP ’19), October 7–9, 2019,
Porto, Portugal. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3354166.3354181

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PPDP ’19, October 7–9, 2019, Porto, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7249-7/19/10. . . $15.00

https://doi.org/10.1145/3354166.3354181

1 INTRODUCTION
Compositional compiler verification aims to formally verify cor-

rect compilation of components, not just whole programs. It has

been the focus of much recent work, with researchers proposing

several different approaches to specifying and proving such theo-

rems [Perconti and Ahmed 2014; Stewart et al. 2015; Neis et al. 2015;

Kang et al. 2016; Wang et al. 2014, 2019]. Still, it remains a difficult

problem, and harder still if we want to accommodate linking with

components compiled from a different language.

In 2014, Perconti and Ahmed proposed a methodology for com-

positional compiler correctness that supports linking with code of

arbitrary provenance, (e.g., compiled from a different source lan-

guage). To date, theirs is the only approach that (1) allows compiled

components to be linked with code whose functionality cannot

even be expressed in the compiler’s own source language; and (2)

does not require that the source, target, and intermediate languages

of the compiler have the same memory model. The essence of their

approach is to define a multi-language system that formalizes in-

teroperability between the source and target languages so that

compiler correctness can be stated as contextual equivalence in the

multi-language. They illustrate this methodology on a two-pass

type-preserving compiler for a polymorphic language with recur-

sive types, performing closure conversion and allocation to make

data layout explicit. To demonstrate that their framework supports

linking with code that cannot be expressed in the source, they add

mutable references only to their target language and show an ex-

ample of linking with code that internally uses a mutable reference

as a counter. In comparison, SepCompCert [Kang et al. 2016], Pil-

sner [Neis et al. 2015], and CompCertX [Wang et al. 2019] don’t

support linking with code inexpressible in the compiler’s source

language and Compositional CompCert [Stewart et al. 2015] only al-

lows linking with code that satisfies the CompCert memory model.

Meanwhile, SepCompCert and Compositional CompCert also rely

on a uniform memory model across all the compiler’s languages.

In this paper, we show how to extend the Perconti-Ahmed multi-

language approach to a source language with ML-style mutable

references. We present the first compositional correctness proof of

typed closure conversion for a language with mutable state. More

significantly, we show we can extend our target language with first-

class control (call/cc) yielding a compiler correctness theorem that

allows components compiled from the source language (without

call/cc) to be linked with target-language components (with call/cc)

whose extensional behavior cannot be expressed in the source. Our

source language M is essentially an idealized ML with polymor-

phism and mutable state while our closure-conversion target C
adds call/cc and the restriction that functions must not have any

free type or term variables.

https://doi.org/10.1145/3354166.3354181
https://doi.org/10.1145/3354166.3354181
https://doi.org/10.1145/3354166.3354181

PPDP ’19, October 7–9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

signature THREAD = sig
type thread
val fork : (unit -> unit) -> unit
val yield : unit -> unit
val exit : unit -> unit

end

functor Thread () : THREAD = struct
type thread = unit cont
val readyQueue : thread Queue.queue = Queue.mkQueue ();
fun dispatch () = let val t = Queue.dequeue readyQueue

in throw t ()
end

fun enqueue t = Queue.enqueue (readyQueue, t)

fun fork f = callcc (fn parent =>
(enqueue parent; f (); exit ()))

fun yield () = callcc (fn parent =>
(enqueue parent; dispatch ()))

fun exit () = dispatch ()
end

Figure 1: A Simple Threads Library

The goal of our work is to allow linking a component compiled

fromM with code that uses first-class control in a way that fruit-
fully disrupts the control flow of theM component. Consider, for

example, a scenario where wewrite a component PM inM and want

to link it with a green threads library (which can be implemented

in language C). Figure 1 presents such a simple threads library.

As another example, consider a continuation-based web server

that provides call/cc-based primitives that a web programmer can

use for creating client-server interaction points [Krishnamurthi et al.

2007; Queinnec 2003]. The programmer, meanwhile, might use our

language M (without first-class control) to develop her web appli-

cation, making use of the aforementioned primitives which allow

her to write her program in a more readable direct style. In both of

these situations, the programmer wishes to link with code compiled

from a language with call/cc and benefit from call/cc disrupting the

control flow of the compiled M component. Our verified compilers

should be able to formally support such linking scenarios.

We develop a multi-language semantics between our source and

target languages that is the first to support both mutable references

as well as polymorphism in both interoperating languages. We then

use contextual equivalence in the multi-language to state our com-

positional compiler correctness theorem. A nontrivial technical

contribution of our work is the design of the multi-language logical

relation used to carry out the proof of compiler correctness. This

is semantically challenging due to the mix of parametric polymor-

phism and mutable state in both of the interoperating languages.

2 THE SOURCE AND TARGET LANGUAGES
The source and target languages are both call-by-value. They are

both in monadic normal form—a choice common for compiler inter-

mediate languages—which means that constructors and eliminators

are only applied to syntactic values [Benton et al. 1998]. Note that

we will often refer to the terms of each language as components: this
is meant to emphasize that individual terms are the level of granu-

larity at which we ensure correct compilation of source components

and linking with target components.

τ ::= α | unit | int | ∀[α].(τ)→ τ | ∃α .τ | µα .τ | ref τ | ⟨τ ⟩
p ::= + | − | ∗

v ::= x | () | n | λ[α](x : τ).e | pack ⟨τ , v⟩ as ∃α .τ | foldµα .τ v
| ℓ | ⟨v⟩

e ::= v | v p v | if0 v e e | v [τ] v | unpack ⟨α , x⟩ = v in e | unfold v
| new v | v := v | ! v | πi(v) | let x = e in e

E ::= [·] | let x = E in e
H ::= · | H, ℓ 7→ v

⟨H | e⟩ 7−→ ⟨H | e′⟩
.
.
.

⟨H | E[(λ[α](x : τ).e) [τ ′] v]⟩ 7−→ ⟨H | E[e[τ ′/α][v/x]]⟩
⟨H | E[new v]⟩ 7−→ ⟨H[ℓ 7→ v] | E[ℓ]⟩ ℓ < H
⟨H | E[ℓ := v]⟩ 7−→ ⟨H[ℓ 7→ v] | E[()]⟩ ℓ ∈ H

⟨H | E[! ℓ]⟩ 7−→ ⟨H | E[v]⟩ H(ℓ) = v

¯ ⊢ H : ¯′

dom(¯) ∩ dom(¯′) = ∅ ⊢ ¯′

(¯, ¯′); ·; · ⊢ v1 : ¯′(ℓ1), . . . , (¯, ¯′); ·; · ⊢ vn : ¯′(ℓn)

⊢ {ℓ1 7→ v1, . . . , ℓn 7→ vn } : ¯′

¯; ´; ` ⊢ e : τ where ¯ ::= · | ¯, ℓ : τ and ´ ::= · | ´, α and ` ::= · | `, x : τ

x : τ ∈ `

¯; ´; ` ⊢ x : τ

¯(ℓ) = τ

¯; ´; ` ⊢ ℓ : ref τ

¯; ´, α ; `, x : τ ⊢ e : τ ′

¯; ´; ` ⊢ λ[α](x : τ).e : ∀[α].(τ)→ τ ′

¯; ´; ` ⊢ v0 : ∀[α].(τ)→ τ ′ ´ ⊢ τ0 ¯; ´; ` ⊢ v : τ [τ0/α]

¯; ´; ` ⊢ v0 [τ0] v : τ ′[τ0/α]

¯; ´; ` ⊢ v : τ

¯; ´; ` ⊢ new v : ref τ

¯; ´; ` ⊢ v1 : ref τ ¯; ´; ` ⊢ v2 : τ

¯; ´; ` ⊢ v1 := v2 : unit

¯; ´; ` ⊢ v : ref τ

¯; ´; ` ⊢ ! v : τ

Figure 2: Source LanguageM: Syntax & Semantics (excerpt)

We start with some notes about typesetting and notational con-

ventions. We typeset the source language M in blue, the target

language C in red bold, and later in the paper, the multi-language

M+C in black. For each of our languages, we use the metavariable

τ for types, e for terms or components, v for values, ℓ for locations,

H for heaps, E for evaluation contexts, and C for general contexts.

We write fv(e) to denote the free term variables of e and ftv(e)
(or ftv(τ)) to denote the free type variables of e (or of type τ). We

use a line above a syntactic element to indicate a list of repeated

instances of this element, e.g., α = α1, . . . ,αn for n ≥ 0. When

the arities of different lists are required to match up in a definition

or inference rule, these constraints will usually be obvious from

context. Whenever two environments (e.g. Ψ or ∆ or Γ) are joined
by a comma, this should be interpreted as a disjoint union.

Source Language: M. The source language M is call-by-value

System F with dynamically allocated, ML-style mutable references,

existential types, recursive types, and tuples. Figure 2 presents the

complete syntax along with excerpts of the static and dynamic

semantics. We combine type- and term-level abstractions of arbi-

trary arity into a single binding form ∀[α].(τ)→ τ ′, abbreviating
∀[].(τ)→ τ ′ as (τ)→ τ ′. A program configuration in M, written

⟨H | e⟩ is a pair of a heap H and a closed term e. A heap H is a

PPDP ’19, October 7–9, 2019, Porto, Portugal

mapping from locations ℓ to their contents v. We define a small-

step operational semantics as a relation on program configurations,

using evaluation contexts E to lift the primitive reductions to a

standard left-to-right call-by-value semantics. The reduction rules

are standard; we only show the application rule and the rules for

creating a new initialized reference (new v), assignment (v := v′),
and dereferencing (! v).

The typing judgment forM has the form ¯; ´; ` ⊢ e :τ . The heap
type ¯ tracks the types τ of the contents of heap locations ℓ in scope,

where τ must be a closed type. The type environment ´ tracks the
type variables α in scope. The value environment ` tracks the term
variables x in scope along with their types τ , which must be well

formed under ´ (written ´ ⊢ τ and defined as ftv(τ) ⊆ ´). The typing
rules are standard and we omit most of them; they appear later as

part of the extended judgment for type-directed closure conversion

presented in Figure 5.

The typing judgment for heap fragments has the form ¯ ⊢ H : ¯′,
which says that the heap fragment H is assigned the heap type ¯′

under the assumption that there is some (external) heap type ¯with
locations that may be referenced by values stored in H. Here ¯′

must provide types for exactly the locations in H and the values

stored in H must typecheck under the disjoint union of the two

heap types (¯, ¯′).
The reader may wonder why we need to typecheck heap frag-

ments instead of whole heaps. In fact, in the languageM, a judgment

for typechecking whole heaps is sufficient for proving type sound-

ness since we only appeal to this judgment when typechecking

the (whole) heap in a program configuration. However, we adopt

the more general judgment for typing heap fragments because we

will need this ability in §4 when we combine our source and target

languages into a multi-language system whose heap H is a pair

(H,H) of source and target heaps, each of whose contents may refer

to locations in the other.

Target Language: C. Our closure-conversion target language C
is shown in Figure 3. The non-shaded parts of the figure show the

language without first-class control (call/cc), which we will refer

to as the base language below. This subset of C is nearly identical

toM, with two exceptions. First, since this language is the target of

closure conversion, functions are not allowed to contain free type

or term variables. This is enforced by the C function typing rule

as shown in Figure 3. Second, we allow the partial application of a

function to a type. Hence,M terms include the value form v[τ].
The shaded parts of Figure 3 extend the base language with first-

class control. First-class continuations are represented by contτ E,
a value form that injects evaluation contexts E (with a hole of type

τ) into the term language. The type contτ is the type ascribed

to first-class continuations contτ E that expect a value of type τ .
Evaluation contexts E are a subset of general contexts C, which
are terms with a single hole. The typing judgment for contexts has

the form ⊢ C : (¯; ´; ` ⊢ τ) { (¯′; ´′; `′ ⊢ τ ′). Context typing ensures
that, given any term e that satisfies the type of the hole, ¯; ´; ` ⊢ e :τ ,
we have that ¯′; ´′; `′ ⊢ C[e] : τ ′.1 We extend the base language

1
The grammar for general contexts is essentially standard except that, since our

language is in monadic normal form, we have to be careful about when a hole can be

plugged with an expression and when it must be plugged with a value. We discuss

this further in §5. Note that this does not matter for evaluation contexts since their

holes accept expressions.

τ ::= α | unit | int | ∀[α].(τ)→ τ | ∃α .τ | µα .τ | ref τ
| ⟨τ ⟩ | cont τ

p ::= + | − | ∗
v ::= x | () | n | λ[α](x : τ).e | v[τ] | pack ⟨τ , v⟩ as ∃α .τ

| foldµα .τ v | ℓ | ⟨v⟩ | contτ E
e ::= v | v p v | if0 v e e | v [] v | unpack ⟨α , x⟩ = v in e

| unfold v | newv | v := v | ! v | πi(v) | let x = e in e
| call/ccτ (x. e) | throwτ v to v

E ::= [·] | let x = E in e
H ::= · | H, ℓ 7→ v

⟨H | e⟩ 7−→ ⟨H | e′⟩
.
.
.

⟨H | E[(λ[α](x : τ).e) [τ ′] v]⟩ 7−→ ⟨H | E[e[τ ′/α][v/x]]⟩
⟨H | E[call/ccτ (x. e)]⟩ 7−→ ⟨H | E[e[contτ E/x]]⟩

⟨H | E[throwτ v to contτ E′]⟩ 7−→ ⟨H | E′[v]⟩

¯ ⊢ H : ¯′ (analogous to M rule for heap fragments)

¯; ´; ` ⊢ e : τ and ¯; ´; ` ⊢ E ÷ τ

where ¯ ::= · | ¯, ℓ : τ and ´ ::= · | ´, α and ` ::= · | `, x : τ

x : τ ∈ `

¯; ´; ` ⊢ x : τ

¯;α ; x : τ ⊢ e : τ ′

¯; ´; ` ⊢ λ[α](x : τ).e : ∀[α].(τ)→ τ ′

¯; ´; ` ⊢ v : ∀[β , α].(τ)→ τ ′ ´ ⊢ τ0

¯; ´; ` ⊢ v[τ0] : ∀[α].(τ [τ0/β])→ τ ′[τ0/β]

¯; ´; ` ⊢ v : ∀[].(τ)→ τ ′ ¯; ´; ` ⊢ v : τ

¯; ´; ` ⊢ v [] v : τ ′

¯; ´; `, x : cont τ ⊢ e : τ

¯; ´; ` ⊢ call/ccτ (x. e) : τ
¯; ´; ` ⊢ v′ : τ ′ ¯; ´; ` ⊢ v : cont τ ′

¯; ´; ` ⊢ throwτ v′ to v : τ

¯; ´; ` ⊢ E ÷ τ

¯; ´; ` ⊢ contτ E : cont τ

⊢ E : (¯; ´; ` ⊢ τ) { (¯; ´; ` ⊢ τ ′)

¯; ´; ` ⊢ E ÷ τ

Figure 3: Target Language C: Syntax & Semantics (excerpt)

with a continuation typing judgment ¯; ´; ` ⊢ E ÷ τ that says that E
is an evaluation context with a hole of type τ . We need the latter

to type check first-class continuations contτ E.
We also add call/cc and throw with the standard operational

semantics and typing rules. As usual, call/ccτ (x. e) captures its cur-
rent continuationE, binds it to x, and continueswithE[e[contτ E/x]].
Meanwhile, throwτ v to contτ E′ throws away its current contin-

uation E and continues with E′[v].

3 TYPED CLOSURE CONVERSION
Closure conversion is a standard compiler pass that transforms

functions with references to free variables—i.e., variables from the

local environment—into closed functions in which all variable refer-

ences are bound by the functions’ parameters. The transformation

collects a function’s free term variables in a tuple called the closure

PPDP ’19, October 7–9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

τ C
Compiler Type Translation

α C = α ∀[α].(τ)→ τ ′C = ∃β . ⟨(∀[α].(β , τ C)→ τ ′C), β ⟩
unitC = unit ∃α .τ C = ∃α .τ C

intC = int µα .τ C = µα .τ C

ref τ C = ref τ C ⟨τ1, . . . , τn ⟩C = ⟨τ1C , . . . , τnC ⟩

¯C
(·)C = ·

(¯, ℓ : τ)C = ¯C , ℓ : τ C ´C
(·)C = ·

(´, α)C = ´C , α

`C
(·)C = ·

(`, x : τ)C = `C , x : τ C

Figure 4: Closure Conversion: Type Translation

environment and modifies the function itself to take the environ-

ment as an additional input. The closed function is paired with its

environment to create a closure.
Typing the result of closure conversion poses a problem in that

two source functions with the same type but different free variables

may end up with differently typed closure environments. As an ex-

ample, consider two functions λx. y + 1 and λx. x of type int → int,

where y is a free variable of type int. The function part of their

translations would have types (⟨int⟩, int)→ int and (⟨⟩, int)→ int,

respectively, where the first argument in each case is the function’s

environment. The solution to this problem was proposed by Mi-

namide et al. [1996], who used an existential type to abstract the

type of the environment, thus hiding the fact that the closures’

environments may have different types.

Function definitions in M may also have references to free type
variables, which means we must also transform functions to take

their free type variables as additional arguments. However, instead

of collecting these types in a type environment as Minamide et

al. do, we follow Morrisett et al. [1999] and directly substitute the

types into the function. LikeMorrisett et al.and Perconti and Ahmed

[2014], we adopt a type-erasure interpretation, which means that

since all types are erased at run time the substitution of types into

functions has no run-time effect.

Our typed closure-conversion pass compilesM terms of type τ
to C terms of type τ C

. Figure 4 presents the type translation τ C
.

The only interesting case is that for function types which are trans-

formed into an existential type where β represents the (abstract)

type of the closure environment. Figure 4 also presents the transla-

tion of environments ¯C , ´C , and `C , which we use to typecheck a

closure-converted term.

Figure 5 presents the term translation, which is defined by induc-

tion on typing derivations. We translate anM variable x :τ into a C
variable x :τ C

, and similarly, translate an M location ℓ : ref τ into a

C location ℓ : ref τ C
. Since this is closure conversion, the interesting

cases of the translation are those that involve functions and applica-

tion. The omitted rules are defined by structural recursion on terms.

Note that even though our target language C contains call/cc,
no types or terms pertaining to first-class continuations—shown

shaded in Figure 3—appear in the output of our translation.

4 MULTI-LANGUAGE SEMANTICS
We define a multi-language semantics to specify interoperability

between M and C components along the lines of Matthews and

Findler [2007]; Ahmed and Blume [2011]; Perconti and Ahmed

[2014]. Our M+C multi-language system embeds the languages M
and C so that both languages have natural access to foreign values

(i.e., values from the other language). For instance, they receive

foreign integer values as native values, and can call foreign func-

tions as native functions. We extend the original languages with

new syntax, evaluation contexts, and reduction rules that define

syntactic boundaries
τMC and CMτ

to allow cross-language com-

munication. The term
τMC e (C inside,M outside) allows a term e

of target type τ C
to be used as a term of source type τ , while the

term CMτ e (M inside, C outside) allows a term e of source type τ
to be used as a target term of translation type τ C

.

Our semantics follows Perconti and Ahmed’s except that we add

mutable references. The tricky parts, which involve abstract types,

are inherited from Perconti and Ahmed so we summarize their work

before discussing mutable references. A term CMτ e has type τ C
if

e has type τ and to evaluate it we first reduce e to a value v (using
M reduction rules). Then a type-directed meta-function called the

value translation is applied to v, yielding a value v in C of type

τ C
(written CMτ (v) = v). The value translation is only defined for

closed values since it is used at run time: even if we write programs

with free variables under boundaries, we will have substituted

closed values for all variables since we only run closed programs.

Value translation is easy at base types, e.g., a value n of type int
is converted to the same integer n in C. Most of the other types

are translated simply by structural recursion, but functions are

the interesting case (shown below). To translate anM function of

type τ→ τ ′, we construct a closure in C. Since at runtime a source

function will be closed by substitution, the closure has the empty

environment. Additionally, the input of the function is translated to

M so it can be passed to the original function whose output is then

translated to C (as with higher-order contracts). To translate a C
closure to M, we produce an M function that unpacks the closure,

translates the input, calls the C function with the translated input

and its packed environment, and translates the output toM.

CMτ → τ ′ (v) = pack ⟨unit, ⟨v, ()⟩⟩ as ∃β . ⟨((β , τ C) → τ ′C), β ⟩
where v = λ(z :unit, x : τ C).CMτ ′ (v τMC x)

τ → τ ′MC(v) =
λ(x : τ).τ

′
MC (unpack ⟨β , y⟩ = v in π1(y) π2(y) CMτ x)

Next, consider the type ∀[α].(α)→ α . Since α C = α , the trans-

lation of this type is ∃β .⟨(∀[α].(β,α)→ α), β⟩. Naively value-

translating a value v of this type, we get:

∀[α].(α)→ αMC(v) =
λ[α](x :α).αMC (unpack ⟨β , y⟩ = v in π1(y) [α C]π2(y) CMα x)

But note that α C = α , which means α would be unbound! Perconti

and Ahmed point out that what we want instead is that when α is

instantiated with a concrete type τ , the positions inside language
C where that type is needed receive τ C

. To this end, they add a

type ⌈α⌉ (“α suspended in C”) that allows an M type variable to

appear in a C type. TheM type variable α needs to be translated,

but the translation is delayed until α is instantiated with a con-

crete type. This is enforced in the definition of type substitution:

⌈α⌉[τ/α] = τ C
. In addition, they define amodified type translation—

the boundary type translation τ ⟨C⟩
—to turnM type variables into

suspended type variables instead of C type variables. Formally, the

rule for type variables in the compiler’s type translation is replaced

PPDP ’19, October 7–9, 2019, Porto, Portugal

¯; ´; ` ⊢ e : τ { e where ¯; ´; ` ⊢ e : τ and ¯C ; ´C ; `C ⊢ e : τ C

x : τ ∈ `

¯; ´; ` ⊢ x : τ { x ¯; ´; ` ⊢ () : unit { () ¯; ´; ` ⊢ n : int { n

¯(ℓ) = τ

¯; ´; ` ⊢ ℓ : ref τ { ℓ

y1, . . . , ym = fv(λ[α](x : τ).e) β1, . . . , βk = ftv(λ[α](x : τ).e) `(y1) = τ1 . . . `(ym) = τm τenv = ⟨τ1C , . . . , τmC ⟩
¯; ´, α ; `, x : τ ⊢ e : τ ′ { e v = λ[β , α](z : τenv, x : τ C).let y1 = π1(z) in . . . let ym = πm(z) in e

¯; ´; ` ⊢ λ[α](x : τ).e : ∀[α].(τ)→ τ ′ { pack ⟨τenv, ⟨v[β], ⟨y⟩⟩⟩ as ∃α ′. ⟨(∀[α].(α ′, τ C)→ τ ′C), α ′⟩

¯; ´; ` ⊢ v0 : ∀[α].(τ1)→ τ2 { v0 ´ ⊢ τ ¯; ´; ` ⊢ v : τ1[τ /α] { v

¯; ´; ` ⊢ v0 [τ] v : τ2[τ /α] { unpack ⟨β , z⟩ = v0 in let f = π1(z) in let y = π2(z) in f [τ C] (y, v)

¯; ´; ` ⊢ v : τ { v

¯; ´; ` ⊢ new v : ref τ { newv

Figure 5: Closure Conversion: Term Translation (excerpt)

τ ::= · · · | L⟨τ ⟩
v ::= · · · | ref τMC ℓ | L⟨τ ⟩MC v
e ::= · · · | τMC e
E ::= · · · | τMC E
τ ::= · · · | ⌈α ⌉
v ::= · · · | CMref τ ℓ | contτ E

e ::= · · · | CMτ e
E ::= · · · | CMτ E

τ ::= τ | τ

v ::= v | v
e ::= e | e
E ::= E | E
H ::= (H,H)

Ψ ::= (¯, ¯)
∆ ::= · | ∆, α | ∆, α

Γ ::= · | Γ, x : τ | Γ, x : τ

τ ⟨C⟩
Boundary Type Translation

α ⟨C⟩ = ⌈α ⌉ L⟨τ ⟩ ⟨C⟩ = τ

unit⟨C⟩ = unit ∃α .τ ⟨C⟩ = ∃α .τ ⟨C⟩[α /⌈α ⌉]
int⟨C⟩ = int µα .τ ⟨C⟩ = µα .(τ ⟨C⟩[α /⌈α ⌉])
ref τ ⟨C⟩ = ref τ ⟨C⟩ ⟨τ1, . . . , τn ⟩ ⟨C⟩ = ⟨τ1 ⟨C⟩ , . . . , τn ⟨C⟩ ⟩

∀[α].(τ)→ τ ′ ⟨C⟩ = ∃β . ⟨
(

∀[α].(β , τ ⟨C⟩[α /⌈α ⌉])→ τ ′ ⟨C⟩[α /⌈α ⌉]
)

, β ⟩

Type Substitution: ⌈α ⌉[τ /α] = τ ⟨C⟩

Ψ;∆; Γ ⊢ e : τ Include M and C rules, replacing environments with Ψ;∆; Γ

Ψ;∆; Γ ⊢ e : τ ⟨C⟩

Ψ;∆; Γ ⊢ τMC e : τ

Ψ;∆; Γ ⊢ e : τ

Ψ;∆; Γ ⊢ CMτ e : τ ⟨C⟩

⊢ E : (Ψ;∆; Γ ⊢ τ) { (Ψ;∆; Γ ⊢ τ ′)

Ψ;∆; Γ ⊢ E ÷ τ

Ψ;∆; Γ ⊢ E ÷ τ

Ψ;∆; Γ ⊢ contτ E : cont τ

Figure 6:M+C: Syntax & Static Semantics (extends Figs 2, 3)

by the rule α ⟨C⟩ = ⌈α⌉ in the boundary type translation. Since

we only want to suspend free type variables, when translating a

type that contains bound variables we must restore the behavior

of the compiler’s type translation when translating the binding

position: e.g., (∃α .τ)⟨C⟩ = ∃α .(τ ⟨C⟩[α/⌈α⌉]). Thus the boundary
type translation preserves the binding structure of the original type.

An additional issue arises if we naïvely translate values of type

∀[α].(α)→ α from M into C:

CM∀[α].(α)→ α (v) = pack ⟨unit, ⟨v, ()⟩⟩ as (∀[α].(α)→ α)⟨C⟩

where v = λ[α](z :unit, x :α).CMα (v [α] αMC x)

Translating the binder for α into a C binder for α leaves free oc-

currences of α in the result, which is a problem since we must

produce a closed value. Moreover, the boundary terms in the body

of v expect to be annotated with a type that translates to α . To fix

this, Perconti and Ahmed introduce a lump type L⟨τ ⟩ that allows
passing C values to M terms as opaque lumps. The introduction

form for the lump type is the boundary term
L⟨τ ⟩MC e, and the

elimination form is CML⟨τ ⟩ e. Opposite boundaries at lump type

cancel to yield the underlying C value. Thus, our boundary type

translation defines L⟨τ ⟩ ⟨C⟩ = τ . Now, each α in the above example

can be changed to L⟨α ⟩.

Consider translating a value ℓ to the other language. We can’t

generate a new C location ℓ—how would we keep these mutable

references in sync? The only option is to require CMref τ ℓ (and

similarly
ref τMC ℓ) to be a value form that can be accessed (up-

dated and dereferenced) from the other language. Figure 6 and 7

present the details, including the typing rules and complete value

translations. Note that call/cc captures the entire continuation (not

just the part that is red code, until the first boundary).

Our multi-language semantics for mutable references resembles

the treatment of references in Dimoulas et al. [2012]’s imperative

Contract PCF (CPCF). Our value forms CMref τ ℓ and ref τMC ℓ
are analogous to theirs where a guard attaches itself permanently

around locations when locations cross component boundaries.

Like Perconti-Ahmed, our goal is to define a multi-language for

stating compositional compiler correctness. Thus, an important

property our multi-language must satisfy is boundary cancellation,
which says that wrapping a term in opposing boundaries is contex-

tually equivalent to the underlying term (discussed further in §7).

5 COMPOSITIONAL CORRECTNESS OF
CLOSURE CONVERSION

We specify correctness of our closure-conversion pass fromM to C
in terms of contextual equivalence in the multi-languageM+C. In
this section, we formally define contextual equivalence for M+C
components and present the compiler correctness theorem. Later,

in §7, we will show to prove the compiler correctness theorem using

a logical relation that gives us a sound and complete proof method

for M+C contextual equivalence.

Multi-language Contextual Equivalence. As usual, a general con-
textC is anM+C expression with a single hole in it. However, there

are two ways in which M+C contexts are not entirely standard.

First, since this a multi-language, we can only plug a hole in the

context with a term that is of the right outermost color—i.e., a term

PPDP ’19, October 7–9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

CMτ (v) = v Value Translation

CMunit(()) = () CMint(n) = n CML⟨τ ⟩(L⟨τ ⟩MC v) = v

CM∀[α].(τ)→ τ ′ (v) = pack ⟨unit, ⟨v, ()⟩⟩ as (∀[α].(τ)→ τ ′)⟨C⟩ where v = λ[α](z :unit, x : τ ⟨C⟩[α /⌈α ⌉]).CMτ ′[L⟨α ⟩/α] (v [L⟨α ⟩] τ [L⟨α ⟩/α]MC x)
CM∃α .τ (pack ⟨τ ′, v⟩ as ∃α .τ) = pack ⟨τ ′ ⟨C⟩ , v⟩ as ∃α .τ ⟨C⟩

where CMτ [τ ′/α](v) = v
CMµα .τ (foldµα .τ v) = foldµα .τ ⟨C⟩v where CMτ [µα .τ /α](v) = v

CMref τ (ℓ) = CMref τ ℓ

CMref τ (ref τMC v) = v
CM⟨τ1, . . . , τn ⟩(⟨v1, . . . , vn ⟩) = ⟨v1, . . . , vn ⟩ where CMτi (vi) = vi

τMC(v) = v Value Translation

unitMC(()) = () intMC(n) = n L⟨τ ⟩MC(v) = L⟨τ ⟩MC v
∀[α].(τ)→ τ ′MC(v) = λ[α](x : τ).τ

′
MC (unpack ⟨β , y⟩ = v in π1(y) [⌈α ⌉]π2(y), CMτ x)

∃α .τMC(pack ⟨τ ′, v⟩ as ∃α .τ ⟨C⟩) = pack ⟨L⟨τ ′⟩, v⟩ as ∃α .τ where
τ [L⟨τ ′ ⟩/α]MC(v) = v

µα .τMC(foldµα .τ ⟨C⟩ v) = foldµα .τ v where
τ [µα .τ /α]MC(v) = v

ref τMC(ℓ) = ref τMC ℓ
ref τMC(CMref τ v) = v
⟨τ1, . . . , τn ⟩MC(⟨v1, . . . , vn ⟩) = ⟨v1, . . . , vn ⟩ where

τiMC(vi) = vi

⟨H | e ⟩ 7−→ ⟨H ′ | e′⟩ Lift theM and C reduction rules to the new configuration—with heaps (H,H)—and replace evaluation contexts E and E with E

CMτ (v) = v CMτ v not a value

⟨H | E[CMτ v]⟩ 7−→ ⟨H ′ | E[v]⟩

τMC(v) = v τMC v not a value τ , L⟨τ ⟩

⟨H | E[τMC v]⟩ 7−→ ⟨H ′ | E[v]⟩

⟨H | E[! (CMref τ v)]⟩ 7−→ ⟨H | E[CMτ
! v]⟩ CMref τ v a value

⟨H | E[! (ref τMC v)]⟩ 7−→ ⟨H | E[τMC ! v]⟩ ref τMC v a value

⟨H | E[(CMref τ v) := v]⟩ 7−→ ⟨H | E[CMunit (v := τMC v)]⟩ CMref τ v a value

⟨H | E[(ref τMC v) := v]⟩ 7−→ ⟨H | E[unitMC (v := CMτ v)]⟩ ref τMC v a value

⟨H | E[call/ccτ (x. e)]⟩ 7−→ ⟨H | E[e[contτ E/x]]⟩

⟨H | E[throwτ v to contτ ′ E′]⟩ 7−→ ⟨H | E′[v]⟩

Figure 7:M+C: Dynamic Semantics (extends Figs 2 and 3)

Cv
::= [·]v | λ[α](x : τ).C | pack ⟨τ , Cv ⟩ as ∃α .τ | . . .

C ::= [·] | Cv | . . . | Cv [τ] v | v [τ] v Cv v
| unpack ⟨α , x⟩ = Cv in e | unpack ⟨α , x⟩ = v in C | . . .

| let x = C in e | let x = e in C | τMC C
Cv

::= [·]v | λ[α](x : τ).C | pack ⟨τ ,Cv ⟩ as ∃α .τ | . . .

| throwτ Cv to v | throwτ v toCv

C ::= [·] | Cv | Cv [] v | v [] v Cv v | unpack ⟨α , x⟩ = Cv in e
| unpack ⟨α , x⟩ = v in C | . . . | let x = C in e
| let x = e in C | CMτ C

C ::= C | C

⊢ C : (Ψ;∆; Γ ⊢ τ) { (Ψ′
;∆′

; Γ′ ⊢ τ ′) Context Typing

Ψ ⊆ Ψ′ ∆ ⊆ ∆′ Γ ⊆ Γ′

⊢ [·] : (Ψ;∆; Γ ⊢ τ) { (Ψ′
;∆′

; Γ′ ⊢ τ)

⊢ C : (Ψ;∆; Γ ⊢ τ) { (Ψ′
;∆′

; Γ′ ⊢ τ ⟨C⟩)

⊢ τMC C : (Ψ;∆; Γ ⊢ τ) { (Ψ′
;∆′

; Γ′ ⊢ τ)

Figure 8:M+C General Contexts (excerpt)

whose outermost layer is the same language as the hole. Hence,

we have both blue and red holes. Second, since our languages are

in monadic normal form, certain holes can only be plugged with

value forms, not with arbitrary terms. Hence, we have holes [·]v

and [·]v which accept only values. Figure 8 presents an excerpt of

the syntax of general contexts, along with the typing judgment

for contexts and typing rules for a hole and a boundary form. The

remaining syntax and typing rules are entirely standard and given

in the supplementary material.

Contextual equivalence forM+C (writtenΨ;∆; Γ ⊢ e1 ≈
ctx
M+C e2 :τ)

is defined below in the standard way. It says that two components

e1 and e2 are contextually equivalent if (1) they both have type τ
under environments Ψ, ∆, Γ, and (2) for any well typed context

C—with a hole that accepts components typed τ under Ψ, ∆, Γ
yielding a closed program that may be run with a heap of type

Ψ′
—the programs C[e1] and C[e2] co-terminate when run in any

initial heap H of type Ψ′
.

Definition 5.1 (M+C Contextual Equivalence).

Ψ;∆; Γ ⊢ e1 ≈ctx
M+C e2 : τ

def

= Ψ;∆; Γ ⊢ e1 : τ ∧ Ψ;∆; Γ ⊢ e2 : τ ∧

∀C , Ψ′, τ ′. ⊢ C : (Ψ;∆; Γ ⊢ τ) { (Ψ′
; ·; · ⊢ τ ′) ∧ ⊢ H :Ψ′

=⇒ (⟨H | C[e1]⟩ ⇓ ⇐⇒ ⟨H | C[e2]⟩ ⇓)

In the above definition, notice that the hole in the context C
may be any one of: [·]v, [·], [·]v, or [·]. An implicit requirement in

the above definition is that the context C and expressions e1 and

PPDP ’19, October 7–9, 2019, Porto, Portugal

e2 are such that the expressions can be legally plugged into the

context’s hole. In other words, we assume that C[e1] and C[e2] are
syntactically valid expressions such that Ψ′

; ·; · ⊢ C[ei] :τ
′
.

Compositional Compiler Correctness. We can now state our main

result, that closure conversion of M components intoC components

is semantics preserving.

Theorem 5.2 (Closure Conversion is Semantics Preserving).

If ℓ : τ ′; α ; x : τ ′′ ⊢ e :τ { e, then

ℓ : τ ′; α ; x : τ ′′ ⊢ e≈ctx
M+C

τMC (e[CMref τ ′ ℓ/ℓ][⌈α ⌉/α][CMτ ′′ (x)/x]) : τ .

The formal theorem essentially says that if e compiles to e then

e ≈ctx
M+C e, but we need to perform a substitution so that the free lo-

cations, term variables and type variables of the source component

match those of the compiled component. The source component

e may contain free locations ℓ : τ ′, free type variables α , and free

term variables x : τ ′′, which the compiler translates into ℓ : τ ′C , α ,

and x : τ ′′C , respectively, in the output term e. But the contextual
equivalence in the above theorem uses the blue M environments, so

the compiled component emay only refer to variables and locations

from those environments. Since we are in M+C, we can get the

free locations and variables of the two components back in sync by

substituting wrapped locations CMref τ ℓ for translated locations,

suspended type variables ⌈α⌉ for translated type variables, and the

wrapped term CMτ (x) for translated term variables. Note that since

we are in a call-by-value language, we are careful to substitute value

forms for term variables.

The above compiler correctness theorem can equivalently be

stated using the translated C environments and with the substitu-

tion on the other side, as follows:

ℓ : τ ′C ; α ; x : τ ′′C ⊢ e[ref τ̃
′
MC ℓ/ℓ][L⟨α ⟩/α][τ̃ ′′MC(x)/x] ≈ctx

M+C
τ̃MC e : τ̃

where τ̃ = τ [L⟨α ⟩/α], and similarly, τ̃ ′ = τ ′[L⟨α ⟩/α] and τ̃ ′′ =

τ ′′[L⟨α ⟩/α].
Moreover, it does not matter which side the boundary term is

placed on, since boundary cancellation lemmas (discussed in §7)

allow us to prove, for instance, the following as a corollary:

ℓ : τ ′; α ; x : τ ′′ ⊢ CMτ e≈ctx
M+C e[CMref τ ′ ℓ/ℓ][⌈α ⌉/α][CMτ ′′ (x)/x] : τ ⟨C⟩ .

Note that this version of the theorem uses the boundary type

translation τ ⟨C⟩
for the result type (instead of the compiler’s type

translation τ C
) since we need to ensure that (blue) type variables

in the environment remain connected to their free occurrences in

the result type.

6 EXAMPLES: LINKINGWITH TARGET CODE
THAT USES CALL/CC

In this section, we show that we can link components compiled from

M with C components that make use of call/cc whose extensional
behavior cannot be expressed inM.

2
As discussed in §1, such linking

2
Technically speaking, our compiler correctness statement allows us to model linking

as substitution for free variables in a component. For instance, if e is compiled code

with a free variable x : τ , then we can link it with some e′ : τ by substituting for x,
as in e[e′/x]). However, in the interest of readability, here we will show linking as

context plugging: for instance, we can link appropriately typed C and e to get C[e].
Hence, we are loosely treating a context C as a component—which is justified since it

can easily be turned into a component λ(x : _).C[x]—which lets us eliminate extra

clutter in our examples.

is useful to programmers when they want to link with a library

written in a different language that provides some functionality they

cannot implement in their own source language. We also discuss

when our compiler correctness theorem lets us use single-language

reasoning instead of mixed-language reasoning.

6.1 A Simple Example with Callbacks
We have claimed that we can link with target code inexpressible in

the source; we now make that claim precise. We will demonstrate

two programs e1 and e2 that are contextually equivalent in the

source language M and then show a target context C that can

distinguish between the compiled versions of e1 and e2. This means

that the context C has behavior that cannot be expressed by any

well typed source context C that e1 and e2 may be linked with.

Consider the following two M components of type τ . (This is
the “awkward” example taken from Ahmed et al. [2009]; Dreyer

et al. [2012].)

τ = ((unit)→ unit)→ int
e1 = let x = new 0 in λ(f : _).x := 0; f (); x := 1; f (); ! x
e2 = λ(f : _).f (); f (); 1

The components e1 and e2 are contextually equivalent in the

source language M (see Dreyer et al. [2012] for a proof); that is,

there is noM context C that can distinguish between them. Intu-

itively, this is because the reference x is kept private to the function
returned by e1 (and cannot be modified by the callbacks to f), so
every time this function is called, x is set to 0 but will eventually
be set to 1. Hence, the functions returned by both e1 and e2, will
always return 1 when applied to anyM function of the appropri-

ate type. The terms e1 and e2 below, of translation type τ C
(i.e.,

((unit)→ unit)→ intC), are the compiled versions of e1 and e2:

τ C = ∃β . ⟨((β , ∃α . ⟨((α , unit)→ unit) , α ⟩)→ int) , β ⟩
e1 = let x = new0 in

pack ⟨⟨ref int⟩, ⟨λ(env : ⟨ref int⟩, f : (unit)→ unitC).e′1, ⟨x⟩⟩⟩
where e′1 = let x′ = π1(env) in x′ := 0;unpack ⟨β , fp⟩ = f in

let (f′, fenv) = (π1(fp), π2(fp)) in f′ (fenv, ()); x′ := 1; f′ (fenv, ()); ! x′
e2 = pack ⟨⟨⟩, ⟨λ(env : ⟨⟩, f : (unit)→ unitC).e′2, ⟨⟩⟩⟩
where e′2 = unpack ⟨β , fp⟩ = f in

let (f′, fenv) = (π1(fp), π2(fp)) in f′ (fenv, ()); f′ (fenv, ()); 1

While e1 and e2 are contextually equivalent in the source lan-

guage, their compiled versions e1 and e2 may be linked with the

target-language context C that we present below, which is able to

distinguish between them. First, we show a version of C written in

a non-closure-converted (hence, more readable) form, as written,

say, in an M-like language with call/cc:

C = let g = [·] in let b = new 1 in
let f = λ(_).let bv = ! b in

if0 bv (call/ccunit(k. g (λ(_).throwunit () to k)))
(b := 0) in

g f

Note that if we could link C with the source components e1 and
e2, the programC[e1] would reduce to 0, whileC[e2] would reduce
to 1. The context C can distinguish between e1 and e2 by using

call/cc to capture the continuation k of the second call to f, after
which it sets x back to 0 and then throws control back to k.

The above context C can be expressed in our target language as

C below, which has a hole of type τ ⟨C⟩
.

PPDP ’19, October 7–9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

C = let g = [·] in
unpack ⟨β , gp⟩ = g in
let (g′, genv) = (π1(gp), π2(gp)) in
let b = new1 in
let f = pack ⟨⟨ref int⟩, ⟨(λ(fenv : ⟨ref int⟩, _ :unit).

let b′ = π1(fenv) in
let bv = !b′ in
if0 bv (call/ccunit(k. g′ (genv, p)))

(b′ := 0)),
⟨b⟩⟩⟩ as ((unit)→ unit)C in

g ′(genv, f)
where p = pack ⟨⟨cont unit⟩,

⟨(λ(penv : ⟨cont unit⟩, _ :unit). throwunit () toπ1(penv)), ⟨k⟩⟩

Note that C[e1] 7−→∗ 0 and C[e2] 7−→∗ 1.

Reasoning about Source, Target, and Mixed-Language Programs.
As in Perconti and Ahmed [2014], having formalized and verified

compiler correctness using a multi-language semantics, we can

leverage certain ways of reasoning about programs after compila-

tion and linking.

Consider our earlier component e1. By compiler correctness, we

know ·; ·; · ⊢ e1 ≈ctx
M+C

τMC e1 :τ . Using boundary cancellation, we

equivalently have ·; ·; · ⊢ CMτ e1 ≈ctx
M+C e1 :τ ⟨C⟩

where τ ⟨C⟩ = τ C
.

Now if we link with the target context C from above, we have:

·; ·; · ⊢ C[CMτ e1] ≈ctx
M+C C[e1] : int,

The right-hand side of this equivalence is exactly the purely C
program that we would ultimately run, while the left-hand side is

anM+C program that models it.

If we instead want to link with a different C context ˜C (of the

same type as C) that was compiled from an M context C̃, we have:

·; ·; · ⊢ ˜C[CMτ e1] ≈ctx
M+C

˜C[e1] : int
but we can also simplify this statement since we have the source

code C̃ that we compiled to ˜C. Since our compiler correctness

theorem tells us (roughly) that CM C̃ ≈ctx
M+C

˜C, we can infer that

·; ·; · ⊢ (CM C̃)[CMτ e1] ≈ctx
M+C

˜C[e1] : int
We can push the context plugging under the boundary to get:

·; ·; · ⊢ CMint C̃[τMC CMτ e1] ≈ctx
M+C

˜C[e1] : int
Applying boundary cancellation, we have:

·; ·; · ⊢ CMint C̃[e1] ≈ctx
M+C

˜C[e1] : τ C

Thus, we are now essentially equating a purely M program with a

purely C program, since the only multi-language element in this

statement is the integer boundary at the outermost level which will

merely convert a source n to a target n. This illustrates that when
we do have source-language equivalents for all our target-level

components, our multi-language framework allows us to model

target-level linking with source-level linking.

6.2 Linking with a Threads Library
We return to our motivating example from §1 of linking with a

simple threads package. It should be clear that the simple threads

package shown in Figure 1 can easily be implemented in our source

language M extended with call/cc, essentially as a package of exis-

tential type that exports three functions: fork, yield, and exit. Such

a threads package can be closure converted to our target language

structure T = Thread()
fun some1 () =

(< some1 work start >
T.yield ();
< some1 work continue >
T.yield ();
< some1 work finish >
T.exit ())

fun some2 () =
(< some2 work start >
T.yield ();
< some2 work continue >
T.yield ();
< some2 work finish >
T.exit ())

T.fork (some1);
T.fork (some2);
T.yield ();
T.yield ();

< some1 work start >
< some2 work start >
< some1 work continue >
< some2 work continue >
< some1 work finish >
< some2 work finish >

Figure 9: Code that uses threads package from Figure 1 (left),
and effect of running linked program (right)

C, yielding ethreads. (We do not show the closure-converted im-

plementation of the threads package as it is simply a less readable

version of the SML implementation in Figure 1.)

Now consider the SML code in Figure 9 (left), which uses fork,

yield, and exit from the threads package to interleave the work

being done by two functions (some1 and some2). This code can easily

be written in our source languageM, then compiled to C and linked

with the aforementioned threads package ethreads. If we run the

resulting C program we would have the interleaving effect shown

on the right in Figure 9.

7 LOGICAL RELATION FOR M+C
The compiler correctness theorem we presented in §5 is stated in

terms of M+C contextual equivalence, but it is well known that

direct proofs of contextual equivalence are difficult. The problem is

the quantification over all contexts C in the definition of contex-

tual equivalence (≈ctx
M+C) which makes direct proofs intractable.

Rather than prove contextual equivalences directly, we devise a

logical relation for our multi-language M+C, and use it to prove

our compiler correctness theorem.

We design a step-indexed, biorthogonal, Kripke logical relation

that inherits elements from the multi-language logical relation

devised by Perconti and Ahmed [2014]. The latter extended the

standard Kripke logical relations design by Dreyer et al. [2012] with

the ability to handle multi-language type abstraction. Our main

challenge was figuring out how to extend Perconti and Ahmed’s

logical relation to accommodate wrapped mutable references since

in our multi-language these take the form of wrapped locations

ref τMC ℓ and CMref τ ℓ that are value forms. In a nutshell, we

needed to devise a more general form of logical relation that not

only allows us to relate two values from the same language but
also values across languages, as we shall explain. This in turn led us

to revisit the relational interpretations for types α that the logical

relation is normally parametrized with: our relational interpretation

allows values to be related across languages.

PPDP ’19, October 7–9, 2019, Porto, Portugal

Below we start with an overview of the basic structure of the

logical relation and then discuss novel aspects of the relation and

the major steps required to prove the logical relation sound and

complete for M+C contextual equivalence, We elide details of how

we prove many basic properties of the construction and also elide

proofs of the Fundamental Property of the logical relation, and the

proof of compiler correctness. Complete definitions and proofs are

given in the technical appendix [Mates et al. 2019].

Overview of the Logical Relation. The basic idea of logical re-

lations is to define an equivalence relation on program terms by

induction on the structure of their types. For instance, two func-

tions are related at the type τ1 → τ2 if, given related arguments at

type τ1, the functions yield related results at type τ2. Two tuples

of length n are related at type ⟨τ1, . . . , τn⟩ if their i-th components

(for all 1 ≤ i ≤ n) are related at type τi.
In the presence of state, we have to use Kripke logical relations,

which are relations indexed by possible worldsW . Kripke logical

relations are needed when relatedness only holds under certain

conditions; possible worlds allow us to capture these conditions

and specify constraints on how the conditions may evolve over

time. Our worldsW will specify constraints on heaps. We write

(H1,H2) : W when the heaps H1 and H2 satisfyW . For instance,

two locations ℓ1 and ℓ2 should only be related at type ref τ if: they

actually exist in some heaps that satisfy the current worldW ; if they

contain heap values related at type τ ; and if they continue to exist

and contain related values in all future worldsW ′
that are accessible

from W (written W ′ ⊒ W , where ⊒ is pronounced “extends”).

An important property of Kripke logical relations is monotonicity,

which says that if two values are related in worldW , then they

must be related in all future possible worldsW ′
that extendW .

Finally, step-indexed logical relations allow one to easily deal

with semantic features that lead to “circularities” in the construc-

tion of semantic models, e.g., recursive types [Ahmed 2006] and

mutable references that store functions [Ahmed 2004; Ahmed et al.

2009]. While standard logical relations are usually defined by in-

duction on the structure of types, in the presence of contravariant

recursive types and higher-order store, this scheme is no longer

well founded. The idea behind step-indexing is to define the logical

relation by outer induction on a natural number that, intuitively,

corresponds to the number of steps of computation for which two

programs behave in a related manner, and then nested induction on

the structure of types. The reason why step-indexing helps break

the aforementioned circularities is, intuitively, that unfolding a

recursive type and dereferencing a location each consume a step,

which justifies lowering the step index in appropriate places so we

can give an inductively defined logical relation.

Figures 10 and 11 present the important pieces of our logical

relation. The high-level idea is that we define a value relationVJτ K
that relates closed values at typeτ , a continuation relationKJτ K that
relates closed continuations (evaluation contexts) that have a hole

of type τ , and a term relation EJτ K that relates closed terms at type τ .
Each of these relations is indexed by a worldW . These relations are

built from well-formed worlds (which we discuss below) and well-

typed values, continuations, and terms, requirements captured by

the TermAtom/ValAtom/ContAtom definitions at the top section

of Figure 10. (We will explain the value/term/continuation relations

in Figures 10 and 11 in detail a little later.) We then generalize the

definition to open terms (written Ψ;∆; Γ ⊢ e1 ≈
log
M+C e2 :τ).

Worlds and World Extension. Our worldsW are 4-tuples of the

form (k,Ψ1,Ψ2,Θ), where k is the number of computation steps

we have left, Ψ1 and Ψ2 are the heap types that any heaps H1 and

H2, respectively, must have if they are to satisfyW , and Θ is a

sequence of islands that specify invariants on disjoint parts of the

heap. Figure 10 (top) presents the requirements on the structure

of worlds and islands, which are entirely standard (so we refer the

reader to Dreyer et al. [2012] for details). Briefly, islands can encode

state-transition systems (STS), where s denotes the current state of
the STS; S denotes the set of all states; δ are all possible transitions;

π is the subset of δ that are marked as “public” transitions
3
; HR are

heap relations that, given the current state s of the STS, tell us what
heap fragments are related; and bij keeps track of the correspon-

dence (bijection) between “global” locations in the island’s heaps

for the two programs.

Figure 10 (top) also defines k-approximation (⌊·⌋k) which drops

information at level k and higher from the islands, heap relations,

etc., as well as the “later” operator (▷) which moves us to a world

with one fewer step—we use the later operator in parts of the

definition where we must decrement the step index to ensure a

well founded relation. It also defines world extension (⊒), which

essentially says that in a future world there may be fewer steps

available, all current locations and their types must be unchanged,

there may be additional locations, and the island’s STS may have

made valid transitions to a future state. We omit the definition of

⊒
pub

, which is identical to ⊒ except that ⊒
pub

for islands requires

(s, s ′) ∈ π instead of (s, s ′) ∈ δ .

Value Relation: Standard Parts. The standard practice is for each

of the above relations,VJτ K, KJτ K, and EJτ K, to be parametrized

by a mapping ρ that provides relational interpretations for the free

type variables in τ . For now, assume that ρ maps type variables

α to triples VR ::= (τ1, τ2,R), where τ1 and τ2 are the types used
to instantiate α on the left and right sides, respectively, and R is

a relation between values of those types, or more precisely some

φ ⊆ ValAtom[τ1, τ2]. We will explain shortly why this structure is

not quite what we need—that is, why our R is not simply a φ and

what R[M,M] and R[C,C] signify— but the above suffices to explain

the general principles of the logical relation. We write ρ1 for the
substitution that instantiates each α ∈ dom(ρ)with the correspond-

ing τ1, and ρ2 for the substitution that instantiates each α with the

corresponding τ2. We use dot notation to extract the components

of the triple VR = (τ1, τ2,R) via VR.τ1, VR.τ2, and VR.R.
We briefly explain theM cases of the value relation,VJτ K, which

are shown in the bottom section of Figure 10. (For now, ignore the

middle section of Figure 10, which we return to when we discuss

the value relation for mutable references.) Values of base type are

related if they are the same value. Values are related at type α if

they are in the relational interpretation of α , namely ρ(α).R. (For
now, ignore the [M,M] that follows R in the figure).

3
Dreyer et al. [2012] use private transitions to reason about well-bracketed control flow

in the absence of call/cc. Note the shaded part in the definition of Island (π = δ), which
we add in to our definition in the presence of call/cc: it says that public transitions
are the same as all transitions, which means there are no private transitions in the

presence of call/cc.

PPDP ’19, October 7–9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

HeapAtomn
def

= { (W , H1, H2) | W ∈ Worldn }

HeapReln
def

= { φH ⊆ HeapAtomn | ∀(W , H1, H2) ∈ φH . ∀W ′ ⊒W . (W ′, H1, H2) ∈ φH }

TermAtomn [τ1, τ2]
def

= { (W , e1, e2) | W ∈ Worldn ∧ W .Ψ1; ·; · ⊢ e1 : τ1 ∧ W .Ψ2; ·; · ⊢ e2 : τ2 }

ValAtomn [τ1, τ2]
def

= { (W , v1, v2) ∈ TermAtomn [τ1, τ2]}

Islandn
def

= { θ = (s , S , δ , π , HR, bij) | s ∈ S ∧ S ∈ Set ∧ δ ⊆ S × S ∧ π ⊆ δ ∧ π = δ ∧

δ , π reflexive ∧ δ , π transitive ∧ HR ∈ S → HeapReln ∧ bij ∈ S → P(Val × Val) }

Worldn
def

= {W = (k , Ψ1, Ψ2, Θ) | k < n ∧ ∃m . Θ ∈ Island
m
k }

ValAtom[τ]ρ def

= ValAtom[ρ1(τ), ρ2(τ)]

ContAtom[τ1, τ2] { [τ ′
1
, τ ′

2
]

def

= { (W , E1, E2) | W ∈ World ∧ ∃Ψ1, Ψ2 . ⊢ E1 : (W .Ψ1; ·; · ⊢ τ1) { (Ψ1; ·; · ⊢ τ ′
1
) ∧ ⊢ E2 : (W .Ψ2; ·; · ⊢ τ2) { (Ψ2; ·; · ⊢ τ ′

2
)}

ContAtom[τ1, τ2]ρ { [τ ′
1
, τ ′

2
]ρ′ def= ContAtom[ρ1(τ1), ρ2(τ2)] { [ρ′

1
(τ ′

1
), ρ′

2
(τ ′

2
)]

⌊(θ1, . . . , θm)⌋k
def

= (⌊θ1 ⌋k , . . . , ⌊θm ⌋k) ▷(k + 1, Ψ1, Ψ2, Θ)
def

= (k , Ψ1, Ψ2, ⌊Θ⌋k)

⌊(s , S , δ , π , HR, bij)⌋k
def

= (s , S , δ , π , ⌊HR⌋k , bij) ▷φ def

= { (W , e1, e2) |W .k > 0 =⇒ (▷W , e1, e2) ∈ φ }

⌊HR⌋k
def

= λs . ⌊HR(s)⌋k φH ⊗ φ′
H

def

= { (W , H1 ⊎ H ′
1
, H2 ⊎ H ′

2
) | (W , H1, H2) ∈ φH ∧ (W , H ′

1
, H ′

2
) ∈ φ′

H }

⌊φH ⌋k
def

= { (W , H1, H2) ∈ φH | W .k < k }

(k ′, Ψ′
1
, Ψ′

2
, Θ′) ⊒ (k , Ψ1, Ψ2, Θ)

def

= k ′ ≤ k ∧ Ψ′
1
⊇ Ψ1 ∧ Ψ′

2
⊇ Ψ2 ∧ Θ′ ⊒ ⌊Θ⌋k′

(θ ′
1
, . . . , θ ′m′) ⊒ (θ1, . . . , θm)

def

= m′ ≥ m ∧ ∀j ∈ {1, . . . ,m }. θ ′j ⊒ θ j

(s′, S ′, δ ′, π ′, HR′, bij′) ⊒ (s , S , δ , π , HR, bij) def

= (S ′, δ ′, π ′, HR′, bij′) = (S , δ , π , HR, bij) ∧ (s , s′) ∈ δ

VJτ , τ ⟨C⟩Kρ = {(W , v1, v2) ∈ ValAtom[ρ1(τ), ρ2(τ ⟨C⟩)] | (W , v1, ρ2(τ)MC(v2)) ∈ VJτ Kρ ∧ (W , CMρ1(τ)(v1), v2) ∈ VJτ ⟨C⟩Kρ }
VJτ ⟨C⟩ , τ Kρ = {(W , v1, v2) ∈ ValAtom[ρ1(τ ⟨C⟩), ρ2(τ)] | (W , ρ1(τ)MC(v1), v2) ∈ VJτ Kρ ∧ (W , v1, CMρ2(τ)(v2)) ∈ VJτ ⟨C⟩Kρ }

VJτ , τ Kρ = VJτ Kρ

VJα Kρ = ρ(α).R[M ,M] VJunitKρ = { (W , (), ()) ∈ ValAtom[unit]ρ } VJintKρ = { (W , n, n) ∈ ValAtom[int]ρ }

VJ∀[α].(τ)→ τ ′Kρ = { (W , v1, v2) ∈ ValAtom[∀[α].(τ)→ τ ′]ρ | ∀W ′ ⊒W . ∀VR ∈ MMValRel . ∀v′1, v
′
2 . (W

′, v′1, v
′
2) ∈ VJτ Kρ[α 7→ VR] =⇒

(W ′, v1 [VR.τ1] v′1, v2 [VR.τ2] v
′
2) ∈ EJτ ′, τ ′Kρ[α 7→ VR] }

VJ∃α .τ Kρ = { (W , pack ⟨τ1, v1 ⟩ as ρ1(∃α .τ), pack ⟨τ2, v2 ⟩ as ρ2(∃α .τ)) ∈ ValAtom[∃α .τ]ρ |

∃VR ∈ MMValRel ∧ VR.τ1 = τ1 ∧ VR.τ2 = τ2 ∧ (W , v1, v2) ∈ VJτ Kρ[α 7→ VR] }

VJµα .τ Kρ = { (W , foldρ1(µα .τ) v1, foldρ2(µα .τ) v2) ∈ ValAtom[µα .τ]ρ | (W , v1, v2) ∈ ▷VJτ [µα .τ /α]Kρ }

VJref τ Kρ = { (W , v1, v2) ∈ ValAtom[ref τ]ρ | ∃i . ∀W ′ ⊒W . (loc(v1), loc(v2)) ∈W ′(i).bij(W ′(i).s) ∧
∃φH .W ′(i).HR(W ′(i).s) = φH ⊗ { (W̃ , H1, H2) ∈ HeapAtom | ∀τ1, τ2, v ′

1
, v ′

2
.

lookup
τ (v1, H1) ↪→ (v ′

1
, τ1) ∧ lookup

τ (v2, H2) ↪→ (v ′
2
, τ2) =⇒ (W̃ , v ′

1
, v ′

2
) ∈ VJτ1, τ2Kρ } }

VJ⟨τ1, . . . , τn ⟩Kρ = { (W , ⟨v11, . . . , v1n ⟩, ⟨v21, . . . , v2n ⟩) ∈ ValAtom[⟨τ1, . . . , τn ⟩]ρ | ∀j ∈ {1, . . ., n}. (W , v1j, v2j) ∈ VJτjKρ }

VJL⟨τ ⟩Kρ def

= { (W , ρ1(L⟨τ ⟩)MC v1, ρ2(L⟨τ ⟩)MC v2) ∈ ValAtom[L⟨τ ⟩]ρ | (W , v1, v2) ∈ VJτ Kρ }

lookup
τ (ℓ, { ℓ 7→ v }) ↪→ (v, τ) lookup

τ (CMref τ ′ ℓ, { ℓ 7→ v }) ↪→ (v, τ̂) where ∃τ̂ . τ̂ ⟨C⟩ = τ

lookup
τ (ref τ

′
MC ℓ, { ℓ 7→ v }) ↪→ (v, τ ⟨C⟩) lookup

τ (ℓ, { ℓ 7→ v }) ↪→ (v, τ)

VJα Kρ = ρ(α).R[C ,C] VJunitKρ = { (W , (), ()) ∈ ValAtom[unit]ρ } VJintKρ = { (W , n, n) ∈ ValAtom[int]ρ }

VJ∀[α].(τ)→ τ ′Kρ = { (W , v1, v2) ∈ ValAtom[∀[α].(τ)→ τ ′]ρ | ∀W ′ ⊒W . ∀VR ∈ CCValRel . ∀v′1, v
′
2 . (W ′, v′1, v

′
2) ∈ VJτ Kρ[α 7→ VR] =⇒

(W ′, v1 [VR.τ1] v′1, v2 [VR.τ2] v′2) ∈ EJτ ′, τ ′Kρ[α 7→ VR] }

VJ∃α .τ Kρ = { (W , pack ⟨τ1, v1 ⟩ as ρ1(∃α .τ), pack ⟨τ2, v2 ⟩ as ρ2(∃α .τ)) ∈ ValAtom[∃α .τ]ρ |

∃VR ∈ CCValRel ∧ VR.τ1 = τ1 ∧ VR.τ2 = τ2 ∧ (W , v1, v2) ∈ VJτ Kρ[α 7→ VR] }

VJref τ Kρ = { (W , v1, v2) ∈ ValAtom[ref τ]ρ | ∃i . ∀W ′ ⊒W . (loc(v1), loc(v2)) ∈W ′(i).bij(W ′(i).s) ∧
∃φH .W ′(i).HR(W ′(i).s) = φH ⊗ { (W̃ , H1, H2) ∈ HeapAtom | ∀τ1, τ2, v ′

1
, v ′

2
.

lookup
τ (v1, H1) ↪→ (v ′

1
, τ1) ∧ lookup

τ (v2, H2) ↪→ (v ′
2
, τ2) =⇒ (W̃ , v ′

1
, v ′

2
) ∈ VJτ1, τ2Kρ } }

VJ⌈α ⌉Kρ = ρ(α).R[C ,C]

VJcont τ Kρ = { (W , contρ1(τ) E1, contρ2(τ) E2) ∈ ValAtom[cont τ]ρ | ∀W ′, v1, v2 .W ′ ⊒W ∧ (W ′, v1, v2) ∈ VJτ Kρ =⇒ (W ′, E1[v1], E2[v2]) ∈ O }

Figure 10: M+C Logical Relation: Auxiliary Definitions (top); Value Relation (middle, bottom)

PPDP ’19, October 7–9, 2019, Porto, Portugal

Normally, functions are related if, in any future worldW ′
, apply-

ing them to related arguments yields related results. Our functions,

however, combine type- and term-level abstraction, so we say that

two functions are related at type ∀[α].(τ)→ τ ′ if the following

holds: given any admissible relation triple VR = (τ1, τ2,R) for each
α that the function abstracts over, applying the functions in some

future worldW ′
to (1) the types τ1 and τ2, respectively, and (2) argu-

ment values related inW ′
at types τ under a mapping ρ extended to

account for the new VR for each α , they yield related results. Here,

the definition in the figure says the functions yields results related

in the relation EJτ ′, τ ′K. We will explain this “two-dimensional” E

relation later (when we discuss mutable references). For now, it

suffices to think of EJτ ′, τ ′K simply as EJτ ′K which specifies when

computations are related at the type τ ′.
Packages are related at existential type ∃α .τ if there exists some

interpretation VR of the abstract type under which their bodies are

related. Values of recursive type µα .τ are related if unfolding the

folded value yields values that are related at the type τ [µα .τ/α]
after expending a step (denoted by the later operator ▷). Tuples are
related if all their components are related at the appropriate types.

Finally, lumps are related if the underlying values are related at the

underlying type.

MostC cases of the value relation,VJτK, are shown at the bottom
of Figure 10. The value relations for C’s base, function, existential,
recursive, and tuple types are analogous to the correspondingM
cases. The only tricky case is the case for suspended type variables

⌈α⌉ which we discuss below.

Figure 11 presents the term and continuation relations. In the

term relation EJτ Kρ, two terms are related if running them in re-

lated continuations gives related observations. Two continuations

are related in KJτ Kρ if whenever we are given related values in

some future world (under a restricted notion of public future worlds;
see Dreyer et al. [2012]), then running the continuations with those

values gives us related observations. This technique of defining

the term relation E by appealing to a continuation relation K is

referred to as biorthogonality or ⊤⊤-closure, and it yields a logical

relation that is complete with respect to contextual equivalence.

Under the relation O, two closed terms give us related observa-

tions in worldW if, when we run them in two heaps that satisfy

W , either they both terminate, or they are both still running after

k steps, where k is the number of steps allowed by worldW .

Value Relation: Mutable References. In a single-language Kripke

logical relation (such as Dreyer et al. [2012]), the value relation

for reference types should say that two locations ℓ1 and ℓ2 are

related at type ref τ in worldW if there exists an island inW (the

ith island inW , writtenW (i)), such that in all future worldsW ′
:

(1) the island’s heap relation HR in the current STS state s requires
that the locations’ contents must be related at type τ , and (2) the

pair of locations (ℓ1, ℓ2) are included in the bijection on locations

(bij) tracked by that island.
4

4
The intuition for requirement (2) (i.e., location bijection) is that when relating two

programs with heaps, we must keep track of which pairs of locations from the two

programs should be considered related, and this bijection must be preserved as the

programs run. But note that only “global” locations—informally, those accessible to

a context—need to be part of the bijection; locations that are considered “local state”

need not correspond to any location in the other program.

In ourmulti-language setting, the above interpretation forVJref τ K
does not suffice. Since the multi-language treats wrapped locations

such as
ref τMC ℓ2 as a value form of type ref τ , our value rela-

tion needs to be able to specify relatedness of locations across

languages. But when should a value ℓ1 (a location) be related to

a value
ref τMC ℓ2 (a wrapped location)? Our first instinct when

trying to relate such values was to instantly pull out the concrete

values stored at these locations from heaps H1, H2 (provided by the

island heap relations) and ensure that they are related. But since

the contents of these locations belong to different languages, we

needed to convert them into the same language so that we could

talk about their relatedness in a logical relation that only relates

same-language terms (as in Perconti and Ahmed). For instance, let

H1(ℓ1) = v1 and let H2(ℓ2) = v2. Then, we could state our require-

ment that the locations’ contents be related by requiring that the

values v1 and τMC(v2) be related at type τ .
Unfortunately, the above strategy of definingVJref τ K (and sim-

ilarly VJref τK) so that they translate the contents of the two loca-

tions into the same language made it impossible to prove the bridge

lemma (which we present below). We won’t show here how that

proof breaks, but the intuition is that the multi-language delays

the translation of the value that a wrapped location points to until

dereference. A semantic model of the multi-language must follow

suit, mimicking such delays.

Our solution is to generalize our value, term, and continuation

relations so that they allow us to relate values across languages

(such that one of the values has source type τ and the other has type

τ ⟨C⟩
). Thus, we have VJτ , τ ⟨C⟩Kρ and VJτ ⟨C⟩, τ Kρ, which we can

use to say that two locations from different languages are related if

the values they point to are related across languages. Making the

logical relation more general in this way enables us to prove the

bridge lemma.

Technically, we now have an N -by-N matrix of logical rela-

tions where N is the number of languages embedded in the multi-

language. For our multi-languageM+C, N = 2. On the diagonals,

we haveVJτ , τ Kρ andVJτ ,τKρ. Off-diagonal, we have the cross-
language versionsVJτ , τ ⟨C⟩Kρ andVJτ ⟨C⟩, τ Kρ. Now, the astute
reader may be worried that an approach that requires an N -by-N
matrix of logical relations will not scale well. Fortunately, our actual

logical relation definition isn’t much more involved than a standard

one because we are able to define the off-diagonals in terms of

the diagonals. This can be seen in the middle section of Figure 10,

which gives the definition of VJτ1, τ2K, both the cross-language

and single-language variants.

Value Relation: Suspended Type Variables, Admissible Relations.
We now discuss what properties an interpretation VR of a type

variable α must satisfy to be considered admissible. As usual, these

requirements stem from lemmas that we need about VJτ Kρ: Since
τ = α is a base case, these properties need to hold for any interpre-

tation of α . In our multi-language setting, the two properties we

need are boundary cancellation and the bridge lemmas. We discussed

boundary cancellation in §4; here we give a statement of it in terms

of VJτ Kρ (with cancellation on the right, see technical appendix

for details) which we need to prove admissibility:

Lemma 7.1 (MC/CM Boundary Cancellation). If (W , v1, v2) ∈
VJτ Kρ, and ρ′

2
(τ)MC(CMρ2(τ)(v2)) = v′2, then (W , v1, v′2) ∈ VJτ Kρ ′.

PPDP ’19, October 7–9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

(H1, H2) :W
def

= ⊢ H1 :W .Φ1 ∧ ⊢ H2 :W .Φ2 ∧ (W .k > 0 =⇒ (▷W , H1, H2) ∈
⊗

{ θ .HR(θ .s) | θ ∈W .Θ })

running(k , ⟨H | e ⟩) def

= ∃H ′, e′. ⟨H | e ⟩ 7−→k ⟨H ′ | e′⟩

O = { (W , e1, e2) | ∀(H1, H2) :W . (⟨H1 | e1 ⟩ ⇓ ∧ ⟨H2 | e2 ⟩ ⇓) ∨ (running(W .k , ⟨H1 | e1 ⟩) ∧ running(W .k , ⟨H2 | e2 ⟩) }
KJτ1, τ2Kρ = { (W , E1, E2) ∈ ContAtom[τ1, τ2]ρ { [τ ′

1
, τ ′

2
]ρ′ | ∀W ′, v1, v2 .W ′ ⊒

pub
W ∧ (W ′, v1, v2) ∈ VJτ1, τ2Kρ =⇒ (W ′, E1[v1], E2[v2]) ∈ O }

EJτ1, τ2Kρ = { (W , e1, e2) ∈ TermAtom[ρ1(τ1), ρ2(τ2)] | ∀E1, E2 . (W , E1, E2) ∈ KJτ1, τ2Kρ =⇒ (W , E1[e1], E2[e2]) ∈ O }

Figure 11: M+C Logical Relation: Heap, Continuation, and Term Relations

ValRel[τ1, τ2]
def

= { φ ⊆ ValAtom[τ1, τ2] | ∀(W , v1, v2) ∈ φ .
∀W ′ ⊒W . (W ′, v1, v2) ∈ φ }

CM1(τ1, φ)
def

= { (W , v1, v2) | (W , v1, v2) ∈ φ ∧ CMτ1 (v1) = v1 }
MC1(τ1, φ)

def

= { (W , v1, v2) | (W , v1, v2) ∈ φ ∧ τ1MC(v1) = v1 }

CM2(τ2, φ)
def

= { (W , v1, v2) | (W , v1, v2) ∈ φ ∧ CMτ2 (v2) = v2 }
MC2(τ2, φ)

def

= { (W , v1, v2) | (W , v1, v2) ∈ φ ∧ τ2MC(v2) = v2 }

MMValRel

def

= {VR = (τ1, τ2, R) |
R[M ,M] ∈ ValRel[τ1, τ2] ∧ R[C ,M] ∈ ValRel[τ1 ⟨C⟩ , τ2] ∧
R[M ,C] ∈ ValRel[τ1, τ2 ⟨C⟩] ∧ R[C ,C] ∈ ValRel[τ1 ⟨C⟩ , τ2 ⟨C⟩] ∧
CM1(τ1, R[M ,M]) ⊆ R[C ,M] ∧ MC1(τ1, R[C ,M]) ⊆ R[M ,M] ∧

CM1(τ1, R[M ,C]) ⊆ R[C ,C] ∧ MC1(τ1, R[C ,C]) ⊆ R[M ,C] ∧

CM2(τ2, R[M ,M]) ⊆ R[M ,C] ∧ MC2(τ2, R[M ,C]) ⊆ R[M ,M] ∧

CM2(τ2, R[C ,M]) ⊆ R[C ,C] ∧ MC2(τ2, R[C ,C]) ⊆ R[C ,M] }

CCValRel

def

= {VR = (τ1, τ2, R) | R[C ,C] ∈ ValRel[τ1, τ2] }

Figure 12: Logical Relation: Admissible Value Relations

The lemma for cancellation on the left is similar. Then, we have

two more boundary cancellation lemmas (similarly, on the right

and the left) for the CM/MC boundaries.

The bridge lemmas state that if two values are related at a given

type, then their translations are related at translation type. Or, in

the other direction, if two values are related at translation type,

their backward translations are related at the corresponding source

type. These lemmas are needed to prove soundness of the logical

relation for contextual equivalence. The bridge lemma stated for

the term relation is as follows:

Lemma 7.2 (Bridge Lemma). Let ∆ ⊢ τ and ρ ∈ DJ∆K.
1. If (W , e1, e2) ∈ EJτ ⟨C⟩Kρ then (W , ρ1(τ)MC e1, ρ2(τ)MC e2) ∈ EJτ Kρ
2. If (W , e1, e2) ∈ EJτ Kρ then (W , CMρ1(τ) e1, CMρ2(τ) e2) ∈ EJτ ⟨C⟩Kρ

A further complication is that the admissibility criteria for value

relations and the choice of how to defineVJ⌈α⌉Kρ are intertwined.

Intuitively, the interpretation of ⌈α⌉ requires that we be able to

take the relation VR for α and be able to “translate” the relation

into some VR
′
for ⌈α⌉, all while VR.R and VR

′.R both satisfy the

boundary cancellation and bridge properties. Like Perconti and

Ahmed [2014], instead of trying to do all that work inVJ⌈α⌉Kρ, we
take a different approach and define “translations” of VR.R with the

needed properties up-front. Specifically, we do this by changing the

structure of VR.R to include not just one relation φ on values in the

language of the type variable whose interpretation is being given,

but rather an i +1-by-i +1matrix of relations where i is the number

of languages below it. Hence, as shown in Figure 12, we have a

1-by-1 matrix for the interpretation of C type variables (CCValRel)

and a 2-by-2 matrix for the interpretation of M type variables

(MMValRel). For the latter, we require that the four relations satisfy

properties between each other : translating only all the left (or the

DJ·K = { ∅ }

DJ∆, α K = { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ MMValRel }

DJ∆, α K = { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ CCValRel }

GJ·Kρ = { (W , ∅) | W ∈ World }

GJΓ, x : τ Kρ = { (W , γ [x 7→ (v1, v2)] | (W , γ) ∈ GJΓKρ ∧

(W , v1, v2) ∈ VJτ Kρ }

HJ{·}K =World

HJ¯, ℓ : τ K = HJ¯K ∩ {W ∈ World | (W , ℓ, ℓ) ∈ VJref τ K∅ }

HJ{ ·}K =World

HJ¯, ℓ : τ K = HJ¯K ∩ {W ∈ World | (W , ℓ, ℓ) ∈ VJref τ K∅ }

HJ¯; ¯K = HJ¯K ∩ HJ¯K

Ψ;∆; Γ ⊢ e1 ≈
log
M+C e2 : τ

def

= Ψ;∆; Γ ⊢ e1 : τ ∧ Ψ;∆; Γ ⊢ e2 : τ ∧

∀W , ρ , γ .W ∈ HJΨK ∧ ρ ∈ DJ∆K ∧ (W , γ) ∈ GJΓKρ =⇒
(W , ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτ , τ Kρ

Ψ;∆; Γ ⊢ E1 ≈
log
M+C E2 ÷ τ def

= Ψ;∆; Γ ⊢ E1 ÷ τ ∧ Ψ;∆; Γ ⊢ E2 ÷ τ ∧

∀W , ρ , γ .W ∈ HJΨK ∧ ρ ∈ DJ∆K ∧ (W , γ) ∈ GJΓKρ =⇒
(W , ρ1(γ1(E1)), ρ2(γ2(E2))) ∈ KJτ Kρ

Figure 13: Logical Relation for Open Terms

right) values in one relation should preserve relatedness in the

appropriate neighboring relation.

Now, we can simply define VJ⌈α⌉Kρ = ρ(α).R[C,C] and define

VJαKρ = ρ(α).R[M,M]. With our admissibility criteria, we are

able to prove the boundary cancellation and bridge lemmas (see

the technical appendix for details).

Logical Relation: Open Terms and Continuations. Figure 13 shows
how we lift the closed relations E and K to open terms and contin-

uations. Two open terms e1 and e2 (or open continuations E1 and
E2) are related if, given a world (which must satisfy the heap type

Ψ), a mapping ρ (that maps type variables to admissible VR’s), and

a pair of substitutions γ (where the values being substituted must

be related), we get related components (or related continuations)

by closing off e1 and e2 (respectively, E1 and E2) with ρ and γ .

7.1 Properties of theM+C Logical Relation
We now present some of the main lemmas we prove about the

logical relation, building up to the Fundamental Property.

As mentioned above, the value relation must satisfy monotonic-

ity, which says that if two values are related in a worldW , then

they must be related in all future worlds accessible fromW .

Lemma 7.3 (Monotonicity). If ρ ∈ DJ∆K, ∆ ⊢ τ , ∆ ⊢ τ and
W ′ ⊒W , then

PPDP ’19, October 7–9, 2019, Porto, Portugal

(1) (W , v1, v2) ∈ VJτKρ =⇒ (W ′, v1, v2) ∈ VJτKρ
(2) (W , v1, v2) ∈ VJτ Kρ =⇒ (W ′, v1, v2) ∈ VJτ Kρ
(3) (W , v1, v2) ∈ VJτ , τ ⟨C⟩Kρ =⇒ (W ′, v1, v2) ∈ VJτ , τ ⟨C⟩Kρ
(4) (W , v1, v2) ∈ VJτ ⟨C⟩, τ Kρ =⇒ (W ′, v1, v2) ∈ VJτ ⟨C⟩, τ Kρ

The term relation EJτ K is closed under anti-reduction, which

roughly says that if e1 and e2 reduce to e
′
1
and e ′

2
, respectively, then

if the latter are related in EJτ K, then the former must be as well.

Lemma 7.4 (EJτ Kρ Closed under Type-Preserving Anti-Re-

duction). Let (W , e1, e2) ∈ TermAtom[τ]ρ. Given W ′ ⊒ W , if
W .k ≤W ′.k + k1,W .k ≤W ′.k + k2, and

∀(H1,H2) :W . ∃(H
′
1
,H ′

2
) :W ′.

⟨H1 | e1⟩ 7−→
k1 ⟨H ′

1
| e ′

1
⟩ ∧ ⟨H2 | e2⟩ 7−→

k2 ⟨H ′
2
| e ′

2
⟩,

then (W ′, e ′
1
, e ′

2
) ∈ EJτ Kρ =⇒ (W , e1, e2) ∈ EJτ Kρ.

We use the Monadic Bind lemma extensively: when proving

boundary cancellation, bridge lemmas, and compatibility lemmas.

Lemma 7.5 (Monadic Bind). If (W , e1, e2) ∈ EJτ Kρ, (W , E1, E2) ∈
ContAtom[τ , τ]ρ { [τ ′, τ ′]ρ ′ and

∀W ′ ⊒
pub

W .(W ′,v1,v2) ∈ VJτ Kρ =⇒ (W ′, E1[v1], E2[v2]) ∈ EJτ ′Kρ,

then (W , E1[e1], E2[e2]) ∈ EJτ ′Kρ.

We also prove the boundary cancellation and bridge lemmas

stated earlier and then prove that theV relations are admissible.

Lemma 7.6 (Admissibility ofV). Let ρ ∈ DJ∆K.
(1) If ∆ ⊢ τ , then (ρ1(τ), ρ2(τ),R) ∈ MMValRel.

where R =

[
VJτ , τ Kρ VJτ , τ ⟨C⟩Kρ

VJτ ⟨C⟩, τ Kρ VJτ ⟨C⟩, τ ⟨C⟩Kρ

]
(2) If ∆ ⊢ τ , then (ρ1(τ), ρ2(τ), [VJτKρ]) ∈ CCValRel.

The proof of admissibility follows easily from monotonicity

(Lemma 7.3), boundary cancellation for V (Lemma 7.1) and the

bridge lemma (Lemma 7.2).

Next, we prove the compatibility lemmas, from which we can

easily prove the Fundamental Property of the logical relation.

Lemma 7.7 (Fundamental Property). If Ψ;∆; Γ ⊢ e : τ , then
Ψ;∆; Γ ⊢ e ≈

log
M+C e :τ

Soundness and Completeness with respect to Contextual Equiv-
alence. To show that the logical relation is sound for contextual

equivalence, we first prove that the logical relation is a congru-

ence (elided) and that it is adequate (see below). Then we show

soundness with respect to contextual equivalence, i.e., that logical

equivalence implies contextual equivalence.

Lemma 7.8 (Adeqacy). If Ψ; ·; · ⊢ e1 ≈
log
M+C e2 : τ , ⊢ H :Ψ, then

⟨H | e1⟩ ⇓ if and only if ⟨H | e2⟩ ⇓.

Lemma 7.9 (Logical Relation Sound for Contextual Eqiv-

alence). If Ψ;∆; Γ ⊢ e1 ≈
log
M+C e2 :τ , then Ψ;∆; Γ ⊢ e1 ≈

ctx
M+C e2 :τ .

Finally, we also prove that the logical relation is complete with

respect to M+C contextual equivalence, i.e., that contextual equiva-

lence implies logical equivalence.

Lemma 7.10 (Logical Relation Complete for Contextual

Eqivalence). IfΨ;∆; Γ ⊢ e1 ≈
ctx
M+C e2 :τ , thenΨ;∆; Γ ⊢ e1 ≈

log
M+C e2 :τ .

7.2 Correctness of Closure Conversion
Having proved our logical relation respects contextual equivalence,

we can use it to prove the correctness of closure conversion, Theo-

rem 5.2, which is stated in terms of M+C contextual equivalence.

First, we prove boundary cancellation for open terms, which

follows easily from the lemma for closed terms. We then use that to

prove a lemma about boundary cancellation in a general context.

Lemma 7.11 (Context Boundary Cancellation). -

(1) If the hole in C is [·] then: Ψ;∆; Γ ⊢ e1 ≈
log
M+C C[e2] :τ iff

Ψ;∆; Γ ⊢ e1 ≈
log
M+C C[τ

′
MC CMτ ′ e2] :τ .

(2) If the hole in C is [·] and Ψ;∆; Γ ⊢ e2 : τ ′ ⟨C⟩ then: Ψ;∆; Γ ⊢

e1 ≈
log
M+C C[e2] :τ iff Ψ;∆; Γ ⊢ e1 ≈

log
M+C C[CM

τ ′ τ ′MC e2] :τ .

(3) If the hole in C is [·]v then: Ψ;∆; Γ ⊢ e ≈
log
M+C C[v] :τ iff

Ψ;∆; Γ ⊢ e ≈
log
M+C C[τ

′
MC(CMτ ′(v))] :τ .

(4) If the hole in C is [·]v then: Ψ;∆; Γ ⊢ e ≈
log
M+C C[v] :τ iff

Ψ;∆; Γ ⊢ e ≈
log
M+C C[CMτ ′(τ

′
MC(v))] :τ .

Next, we prove correctness of closure conversion.

Theorem 7.12 (Closure Conversion is Semantics Preserv-

ing). If ¯; ´; ` ⊢ e :τ { e, then

¯; ´; ` ⊢ e ≈log
M+C

τMC (e[CMref τ ′ ℓ/ℓ][⌈α⌉/α][CMτ ′′(x)/x]) :τ .
The proof proceeds by induction on the compiler judgment (Fig-

ure 5). Most cases of the proof make use of Lemma 7.11 as well as

anti-reduction (Lemma 7.4). The most involved proof cases are the

ones for function and application (see technical appendix).

8 RELATEDWORK AND DISCUSSION
Compositional Compiler Correctness. There have been several

recent compositional compiler correctness results, all based on very

different approaches. Most of these—unlike Perconti-Ahmed and

our result—restrict linking to target code that can be expressed in

the compiler’s source language,

Benton and Hur [2009] and Hur and Dreyer [2011] use a cross-

language logical relation to specify “semantic equivalence” between

source and target terms. They show that if a source term s compiles

to a target term t , then s and t are related in the source-target logi-

cal relation. Benton and Hur prove correctness of a compiler from

STLC with recursion to an SECD machine, while Hur and Dreyer

do so for a compiler from an ML-like language to untyped assem-

bly. The cross-language-logical-relation approach does not scale

to multi-pass compilers, so Neis et al. [2015] devised parametric
inter-language simulations (PILS) to prove correctness of Pilsner, a

multi-pass compiler from an ML-like language to assembly [Neis

et al. 2015; Neis 2018]. However, all of these cross-language-/inter-

language-relation approaches have a significant drawback: they

only allow linking with target components that are related to some

source component by the cross-language relation or PILS. In practi-

cal terms then, code produced by a PILS-verified compiler can only

be linked with target code produced by either the same compiler,

or a different compiler from the same source language to the same

target, verified using the same PILS specification.

Stewart et al. [2015] use interaction semantics to provide an ab-

stract specification of interoperability between source and target

PPDP ’19, October 7–9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

components and use it to prove compositional correctness of the

CompCert C compiler [Stewart 2015]. Compositional CompCert

allows linking with any target component that respects restrictions

imposed by CompCert’s memorymodel. It’s not clear how to extend

this approach to compilers whose source and target languages have

different memory models as in Perconti-Ahmed and our work.

Kang et al. [2016] developed SepCompCert, which only allows

linking with other components produced by the same compiler—i.e.,

supports separate compilation. Their goal was to demonstrate that

supporting verified separate compilation requires much less proof

effort than verified compositional compilation which imposes fewer

restrictions on linking.

Wang et al. [2019] use contextual refinement to compositionally

verify Stack-Aware CompCertX, a compiler that extends the mem-

ory model of all the CompCert languages with an abstract finite

stack with uniform stack access policy. CompCertX’s final pass

compiles from CompCert’s block-based model to a flat memory

model. CompCertX does not allow linking with target code that

cannot be expressed in the source—in fact, they augment the source

language with an abstract stack.

Patterson and Ahmed [2019] present CCC, a parametrized com-

positional compiler correctness theorem that they propose is the de-

sired correctness statement for past and future compositional com-

pilation results. They show how to instantiate CCC with Perconti-

Ahmed’s multi-language compiler-correctness result so that the

latter’s correctness theorem implies CCC. The same instantiation

applies for our result; thus our Theorem 5.2 implies CCC.

Fully Abstract Closure Conversion. A translation is said to be

fully abstract if it preserves and reflects contextual equivalence—

the former is difficult to prove when the target language is more

expressive than the source, as the proof requires showing that every

target context that we can link with can be represented in the source

language (see Patrignani et al. [2019] for a survey).

Ahmed and Blume [2008] were the first to show that typed clo-

sure conversion is fully abstract. Their source and target languages

were identical: System F with recursive and existential types. New

et al. [2016] show full abstraction of typed closure conversion from

STLC with recursive types to a target that also has existential types

and exceptions (but neither language has references as we do here).

The target language has a modal type system to distinguish code

with control effects from code without, and they use it to ensure—by

choosing the right type translation—that compiled code is typed so

that it will never be linked with code that throws an unhandled ex-

ception. For the proof, they use universal embedding to embed target

types (including those inexpressible in the source language) into a

universal type (i.e., recursive sum type) and define interoperability

between source code and the universal type.

We conjecture that if we remove call/cc from our target language

C, our translation would be fully abstract. For the proof, we would

need to extend Ahmed and Blume [2008]’s technique, based on

wrapper functions W+
and W−

, that translate components of

type τ to τ C
and vice versa, to support mutable references: in this

case, wrapping would create proxied references.

To achieve full abstraction when the target has first-class con-

trol, we would need to restrict call/cc to delimited continuations

and adopt a target type system for delimited continuations. We

would need to ensure that compiled code is only linked with code

that captures continuations up to the boundary—i.e., continuation-

capturing cannot cross into compiled code. With these changes, we

could then use universal embedding to prove full abstraction.

Finally, instead of achieving full abstraction via restrictions on

linking with target-level control features, we could explore extend-

ing the source language with linking types [Patterson and Ahmed

2017], a feature that allows a programmer to annotate her programs

to indicate where she wishes to link with features unavailable in the

source. A fully abstract compiler would ensure that linking respects

those annotations. This lets programmers control the precise source-

level contextual equivalence they want the compiler to preserve.

Additional Compiler Passes. As future work, we wish to extend

our compiler all the way down to assembly, performing heap alloca-

tion and then code generation. For the latter pass, we can leverage

the work on FunTAL, a multi-language that mixes a high-level

functional language with low-level assembly [Patterson et al. 2017]

and solves the challenge of making assembly compositional.

Extending the compiler with additional passes requires extending

our multi-language with additional languages that sit below C in

the compiler. As discussed in §7, when we have a multi-language

with N -languages, although we seem to need an N -by-N matrix

of logical relations, we are able to define the off-diagonals for the

V relation in terms of the diagonals so this approach scales to

more languages without making the V relation unmanageable.

However, the part of the logical relation that does not scale well

are the admissibility criteria (see Figure 12). As our discussion in §7

notes, we need an i+1-by-i+1 matrix for the interpretation of type

variables from each language, where i is the number of languages

below it in the compiler. Nonetheless, the admissibility criteria are

quite uniform, so we should to be able to systematically derive and

prove them even when i is large.
An alternative is to investigate a different multi-language se-

mantics that scales better. Specifically, the problem with the admis-

sibility criteria stems from the interpretation of suspended type

variables ⌈α⌉: substituting τ for α in the suspension, requires trans-

lating the type to τ ⟨C⟩
. If we could devise a compiler multi-language

that treats suspended types like the opaque lump types we employ

in the other direction, we think that could lead to a logical relation

with simple admissibility criteria (as in the work of Scherer et al.

[2018] who use lump types to pass ML values to a linear language).

A final idea for reducing proof burden when combining many

compiler languages into one is to devise a multi-language where,

instead of simply putting the languages together, we leverage com-

monalities in adjacent languages so we don’t have to deal with the

same feature twice. This seems a bit like the language-independent
interaction semantics idea from Compositional CompCert, but with

syntactic boundaries—modelled as macros—since boundaries are

needed when languages have different memory models.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under grants CCF-1816837 and CCF-1453796. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

PPDP ’19, October 7–9, 2019, Porto, Portugal

REFERENCES
Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quan-

tified Types. In European Symposium on Programming (ESOP). 69–83.
Amal Ahmed and Matthias Blume. 2008. Typed Closure Conversion Preserves Ob-

servational Equivalence. In International Conference on Functional Programming
(ICFP), Victoria, British Columbia, Canada. 157–168.

Amal Ahmed and Matthias Blume. 2011. An Equivalence-Preserving CPS Translation

via Multi-Language Semantics. In International Conference on Functional Program-
ming (ICFP), Tokyo, Japan. 431–444.

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-Dependent Represen-

tation Independence. In ACM Symposium on Principles of Programming Languages
(POPL), Savannah, Georgia.

Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation.
Princeton University.

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-Indexing and Com-

piler Correctness. In International Conference on Functional Programming (ICFP),
Edinburgh, Scotland.

Nick Benton, Andrew Kennedy, and George Russell. 1998. Compiling Standard ML

to Java Bytecodes. In International Conference on Functional Programming (ICFP),
Baltimore, Maryland, USA. 129–140. http://doi.acm.org/10.1145/289423.289435

Christos Dimoulas, Sam Tobin-Hochstadt, andMatthias Felleisen. 2012. Complete Mon-

itors for Behavioral Contracts. In European Symposium on Programming (ESOP).
Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The Impact of Higher-Order

State and Control Effects on Local Relational Reasoning. Journal of Functional
Programming 22, 4&5 (2012), 477–528.

Chung-Kil Hur and Derek Dreyer. 2011. A Kripke logical relation between ML and

assembly. In ACM Symposium on Principles of Programming Languages (POPL),
Austin, Texas.

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis.

2016. Lightweight Verification of Separate Compilation. In ACM Symposium on
Principles of Programming Languages (POPL), St. Petersburg, Florida. ACM, 178–190.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay Mccarthy, Paul T. Graunke, Greg

Pettyjohn, and Matthias Felleisen. 2007. Implementation and use of the PLT Scheme

web server. (2007).

Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control: Compositionally

Correct Closure Conversion with Mutable State (Technical Appendix). (July 2019).

Available at http://www.ccs.neu.edu/home/amal/papers/refcc-tr.pdf.
Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-

Language Programs. In ACM Symposium on Principles of Programming Languages
(POPL), Nice, France. 3–10.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed Closure Conver-

sion. In ACM Symposium on Principles of Programming Languages (POPL), St. Pe-
tersburg Beach, Florida. 271–283.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to

Typed Assembly Language. ACM Transactions on Programming Languages and
Systems 21, 3 (May 1999), 527–568.

Georg Neis. 2018. Compositional Compiler Correctness via Parametric Simulations. Ph.D.
Dissertation. Saarland University.

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and

Viktor Vafeiadis. 2015. Pilsner: A Compositionally Verified Compiler for a Higher-

Order Imperative Language. In International Conference on Functional Programming
(ICFP), Vancouver, British Columbia, Canada.

Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully Abstract Compilation

via Universal Embedding. In International Conference on Functional Programming
(ICFP), Nara, Japan.

Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure

Compilation: A Survey of Fully Abstract Compilation and Related Work. Comput.
Surveys 51, 6, Article 125 (Feb. 2019), 36 pages.

Daniel Patterson and Amal Ahmed. 2017. Linking Types for Multi-Language Software:

Have Your Cake and Eat It Too. In 2nd Summit on Advances in Programming
Languages (SNAPL 2017) (Leibniz International Proceedings in Informatics (LIPIcs)),
Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.), Vol. 71.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 12:1–12:15.

https://doi.org/10.4230/LIPIcs.SNAPL.2017.12

Daniel Patterson andAmal Ahmed. 2019. TheNext 700 Compiler Correctness Theorems

(Functional Pearl). PACMPL 3, ICFP (Aug. 2019).

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. 2017. Fun-

TAL: Reasonably Mixing a Functional Language with Assembly. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Barcelona,
Spain.

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-

Language Semantics. In European Symposium on Programming (ESOP).
Christian Queinnec. 2003. Inverting Back the Inversion of Control or, Continuations

Versus Page-centric Programming. SIGPLAN Not. 38, 2 (Feb. 2003), 57–64.
Gabriel Scherer, Max S. New, Nick Rioux, and Amal Ahmed. 2018. FabULous Interop-

erability for ML and a Linear Language. In FOSSACS.

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and AndrewW. Appel. 2015. Com-

positional CompCert. In ACM Symposium on Principles of Programming Languages
(POPL), Mumbai, India.

James Gordon Stewart. 2015. Verified Separate Compilation for C. Ph.D. Dissertation.
Princeton University.

Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler Verification Meets

Cross-Language Linking via Data Abstraction. In ACM Symposium on Object Ori-
ented Programming: Systems, Languages, and Applications (OOPSLA).

Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack Based Approach

to Verified Compositional Compilation to Machine Code. In ACM Symposium on
Principles of Programming Languages (POPL), Lisbon, Portugal.

http://doi.acm.org/10.1145/289423.289435
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12

	Abstract
	1 Introduction
	2 The Source and Target Languages
	3 Typed Closure Conversion
	4 Multi-Language Semantics
	5 Compositional Correctness of Closure Conversion
	6 Examples: Linking with Target Code That Uses Call/cc
	6.1 A Simple Example with Callbacks
	6.2 Linking with a Threads Library

	7 Logical Relation for M+C
	7.1 Properties of the M+C Logical Relation
	7.2 Correctness of Closure Conversion

	8 Related Work and Discussion
	Acknowledgments
	References

